W niniejszym rozdziale zostaną opisane metody wyznaczania minimalnej liczby autobusów.
Opis metody I
Proponowana metoda polega na porównaniu prawdopodobieństw: empirycznego (obliczonego na podstawie wyników symulacji) oraz założonego. Aby móc określić empirycznie prawdopodobieństwo zachowania ciągłości do modelu symulacyjnego wprowadzono parametr wyznaczający czas utraty ciągłości Tuc i jest on określany jako liczba godzin, w których liczba autobusów użytkowanych była mniejsza od liczby autobusów wynikająca z zapotrzebowania dla danej godziny (niespełniona nierówność ze wzoru 3).
(6) (7)
gdzie:
to liczba godzin w dobie d (d=1…T), w których nastąpiła utrata ciągłości prac przewozowych.
Dla opisanego modelu symulacyjnego eksploatacji autobusów i dla przyjętej liczby N autobusów eksploatowanych wykonywana jest symulacja. Po wykonaniu symulacji wyznaczane jest empiryczne prawdopodobieństwo zachowania ciągłości pzc zgodnie ze wzorem 8. Można uznać, że empiryczne prawdopodobieństwo zachowania ciągłości jest funkcją liczby eksploatowanych autobusów.
gdzie: Tzc – liczba godzin zachowania ciągłości,
Tg – całkowity symulowany czas eksploatacji w godzinach (wzór 3).
Następnie sprawdzana jest różnica pr. empirycznego pzc i pr. założonego pzal.
Gdy spełniona jest nierówność:
Pzał > Pzc (9)
zwiększana jest wartość zmiennej decyzyjnej N (liczby pojazdów eksploatowanych domyślnie zwiększana jest jednostkowo). Model z nową wartością parametru N poddawany jest ponownie procesowi symulacji.
Wartość zmiennej decyzyjnej N, przy której:
Pzał ≤ Pzc (10)
stanowi rozwiązanie optymalne. Określona jest więc wtedy minimalna liczba autobusów eksploatowanych (N*) z prawdopodobieństwem pzc zachowania ciągłości realizacji prac przewozowych.
Algorytm sprawdzania prawdopodobieństwa empirycznego zachowania ciągłości i prawdopodobieństwa założonego zachowania ciągłości został przedstawiony w postaci schematu blokowego na rys. 3.
Rysunek 3. Schemat blokowy obrazujący sprawdzanie warunku zachowania ciągłości
Opis metody II
Metoda druga jest bardzo podobna do metody omówionej w podrozdziale 4.1. a różnica zawarta jest w sposobie wyznaczania prawdopodobieństwa empirycznego zachowania ciągłości.
Prawdopodobieństwo empiryczne wyznaczane jest w tej metodzie jako stosunek liczby utrat ciągłości oraz liczby możliwych utrat ciągłości w całym procesie symulacji (wzór 11). Liczba utrat ciągłości jest liczbą wszystkich sytuacji, w których nie było możliwe zastąpienie autobusów, które utraciły zdatność w procesie użytkowania.
gdzie: ng – liczba autobusów użytkowanych w godzinie g wynikająca z zapotrzebowania godzinowego
udg – liczba autobusów użytkowanych w godzinie g, dobie d sdg – liczba utrat ciągłości w godzinie g, dobie d
W metodzie tej ważne są wszystkie pojedyncze utraty ciągłości a nie tylko te godziny, w których nastąpiły utraty tak jak to ma miejsce w metodzie pierwszej (podrozdział Opis metody I)
Opis metody III
Trzecim podejściem do rozwiązania tego zadania jest metoda wagowej funkcji celu, która uwzględnienia dwa czynniki:
- Koszt eksploatacji Ke;
- Wartość strat
Wagowa funkcja celu przedstawia się następująco (suma iloczynów odpowiednich wag i czynników):
f(N) = W1 Tuc(N)+W2 Ke(N) (12)
gdzie: W1 i W2 – wagi. (W1,W2e (0,1) i W1+W2=1)
Tuc – wartość strat (liczba godzin utracenia ciągłości)
Ke – koszty eksploatacji floty autobusów (m.in. koszty przeglądu, naprawy, paliwa)
Dla tak zbudowanej funkcji celu proces symulacji modelu eksploatacji pozwala na wyznaczenie dopuszczalnej liczby autobusów eksploatowanych N* dla których wartość funkcji osiąga minimum. Ważność czynników określana jest poprzez wagi. Rozwiązanie zadania przy użyciu tej metody może być podyktowane różnymi względami, które będą miały swoje odniesienie w wagach W1 oraz W2. Przykładowy wykres wagowej funkcji celu przedstawiono na rys. 4.
Rysunek 4. Przykładowy wykres wagowej funkcji celu
Zadanie wyznaczania optymalnej liczby autobusów eksploatowanych wymaga operowania prawdopodobieństwami ze względu na losowy charakter opisanego procesu eksploatacji.
Wyniki symulacji
Rysunki 5 i 6 przedstawiają wyniki symulacji, odpowiednio wielkość utraty ciągłości oraz prawdopodobieństwo zachowania ciągłości z zaznaczoną optymalną liczbą autobusów przy której zapotrzebowanie zrealizowane zostało z założonym prawdopodobieństwem
pzal = 0,98. Poniżej przedstawione są założenia i parametry symulacji dla przykładowego systemu eksploatacji.
Zapotrzebowanie godzinowe dla dni tygodnia 1,2,3,4,5 było jednakowe i wynosiło:
N = [20, 20, 20, 20, 30, 40, 70, 60, 60, 60, 60, 60, 50, 70, 80, 90, 80, 70, 50, 40, 40, 30, 30, 20] dla i=1,2,…,5
Zapotrzebowanie godzinowe dla dni tygodnia 6 i 7 było jednakowe i wynosiło:
N = [30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30] dla i=6,7
Strategią wybierania pojazdów z zapasu do użytkowania była strategią maksymalnego przebiegu całkowitego; strategia wycofywania z użytkowania ze względu na zmniejszone zapotrzebowanie była strategią maksymalnego procentu wykonania zadania przewozowego, liczonego w km, występował jeden typ autobusów Q=1, pojemność systemu obsługi wynosiła 10 autobusów jednocześnie obsługiwanych, wyjście z kolejki oczekujących autobusów do rozpoczęcie obsługi zrealizowano w oparciu o teorię kolejki FIFO (First-In-First-Out), zadanie przewozowe określono na 100km, wyłączono kierowanie do Naprawy Głównej (NG = 0), wektor resursów był jednakowy dla wszystkich pojazdów: resurs OT-1 wynosił 1000 km, resurs OT-2 wynosił 10000 km, resurs całkowity wynosił 20000 km. W przypadku wyczerpania resursu całkowitego autobus był wycofywany z eksploatacji. Autobusy wycofane z eksploatacji zmniejszały liczbę autobusów eksploatowanych a na ich miejsce generowane były nowe obiekty.
Rysunek 5. Wielkość utraty ciągłości z 21 symulacji przeprowadzonych dla T=60 dni.
Przy tak założonych wartościach resursów czas symulowanej eksploatacji autobusów (T=60 dni) powodował był na tyle długi, że następowało wycofywanie autobusów do obsługi profilaktycznej OT-1 jak i OT-2 z powodu wyczerpywanych resursów. System obsługi był obciążany autobusami, które uległy awarii bądź wypadkowi oraz przebywały w Obsłudze Codziennej, której poddawane były wszystkie autobusy wycofywane z użytkowania i kończące zadanie przewozowe. Autobusy, które wyczerpały resurs całkowity były wycofywane z eksploatacji a na ich miejscu eksploatację rozpoczynały autobusy nowe.
Rysunek 6. Prawdopodobieństwo zachowania ciągłości (21 symulacji; T=60 dni).
Na rysunku 4 widać jest jak zmienia się wielkość utraty ciągłości, która rozumiana jest jako liczba brakujących autobusów ze względy na niespełnienie zapotrzebowania, które to wynikać może z kilku przyczyn. Taka sytuacja wynika z przebywania autobusów w Systemie Obsługi (oczekujących w kolejce na obsługę lub obsługiwanych) i nie mogących w ten sposób zrealizować zapotrzebowania wynikającego z wektora N.
Rysunek 5 obrazuje jak zmieniało się prawdopodobieństwo zachowania ciągłości w trakcie symulacji, które dla potrzeb tej symulacji liczone było zgodnie ze wzorem 10 (metoda I). Przy przyjęciu pza,=0,98 to już w 17 symulacji, w której N=107 następuje spełnienie warunku z wzoru 12 i N*=107 odpowiada minimalnej liczbie autobusów.
W rzeczywistości warunek ze wzoru 10 nie jest wystarczający i w dalszych badaniach należy uściślić założenia wyboru minimum poprzez analizę prawdopodobieństwa spełnienia zapotrzebowania godzinowego nij dla i =1,2,… ,7; j = 1,2,… ,t.
Wnioski
System eksploatacji autobusów uwzględniający występowanie uszkodzeń i awarii zrealizowany został poprzez wprowadzenie losowej utraty zdatności. W procesie symulacji generowane jest prawdopodobieństwo uszkodzenia oraz awarii. Utrata zdatności eksploatowanych środków transportu w prezentowanym modelu jest zdarzeniem losowym i czyni z niego modelem stochastyczny (losowy). Występowanie zdarzeń losowych z natury rzeczy nie da się jednoznacznie przewidzieć i chcą ustalić minimalną liczbę eksploatowanych autobusów należy założyć poziom istotności realizacji pracy przewozowej. Bez tego założenia dochodzi się do wniosku, iż aby zapewnić całkowite zaspokojenie popytu transportowego należałoby dysponować nieskończoną liczbą autobusów.
Opisana w tej pracy metoda symulacji eksploatacji systemu o parametrach losowych jest narzędziem pozwalającym w łatwy sposób wyznaczenie wymaganej liczby autobusów, których użytkowanie określone jest przez popyt przewozowy.